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Abstract: This paper completely describes the fully automatic segmentation system for left ventricular myocardium 

segmentation from CT images by using active contour model. The system follows a coarse-to-fine strategy by first 

restricting the left ventricle and then damaging the myocardial surfaces of the left ventricle for segmentation. 
Particularly, the blood surface of a CT image is removed and illustrated as a triangular surface. Then, the ventricle is 

localized as a salient element on these surface victimization geometric and anatomical characteristics. After that, the 

heart muscle surfaces square measure initialized from the localization result and evolved by applying forces from the 

image intensities with a constraint supported the initial heart muscle surface locations. 
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I. INTRODUCTION 

     A cardiovascular disease is the source for 17.5 million 

deaths in the world. The early diagnosis of the 

cardiovascular diseases plays an important role in the 

recovery of cardiovascular disease. Cardiac MRI imaging 

using cine MRI, plays an important role that can be used 

for examine cardiac function. Examination of cardiac 

function needs calculation of different cardiac parameters 

(i.e. ejection fraction (EF), left ventricle mass (LVM), left 

ventricle volume. All those parameters are depends on 

segmenting the endocardium, and epicardium contours of 
the left ventricle from the image sequences that are 

acquired from cardiac imaging technique. The manual 

segmentation takes a lot of time and effort from the 

cardiologist for those contours. So that, the automatic 

segmentation is very needful, and that can be considered 

as a difficult task.     

        Early identification of myocardium dysfunction 

through quantitative analysis permits a reliable and fast 

diagnosis of heart diseases. Such quantitative functions 

include left ventricle ejection fraction, left ventricle 

myocardium thickening over the cardiac cycle and left 

ventricle myocardium mass. To evaluate these measures, 
accurate delineation of the left ventricle cavity and left 

ventricle cardiac muscle is required.   

II. RELATED WORKS 

The main difficulties in segmenting the myocardium is 

that large shape deviation within cardiac cycles and 

myocardium was different for between different patients, 

and weak edges between myocardium and heart tissues. 

For an precise and durable segmentation, model-based 

methods have become ascendant in segmentation. Heart 

models are mainly used for representing the geometric or 

potency features of the heart, and they can be used either 
explicitly or implicitly for segmenting heart surfaces. In 

the First methods, models are created in the off-line and 

those models are fitted for images in image segmentations. 

For example, active shape models that gives a statistical 

shape model for a set of affiliated shapes with the 

principal component analysis (PCA) technique, and used  

 

for myocardium segmentation. Active appearance models 

are expanding this idea by including gray scale level 

information and mostly used in segmenting the left and 

right ventricle myocardium from MR images. These 

ASMs and AAMs are restricted to the shape space where 

the heart models are embedded. A more experienced way 

to represent the shape by 3D diffusion wavelets. Using 

deformable models provides a versatile thanks to 

incorporate form priors that are capable of adapting to 

native image content. As an example, Ecabert et al. 
shapely the complete heart as a multi-compartment, 

triangular surfaces. 

The native adaptation was achieved by increasingly 

optimizing the piecewise affine transformations of this 

model to match image boundaries. In a mean form of the 

centre was fitted to a picture by estimating similarity 

transformations that was then distorted to match image 

boundaries with the assistance of landmark points on the 

interventricular septum. Rather than deforming a pre-

aligned model, atlas-based ways use form information 

implicitly by directly registering each atlas image to a 

destination image. 
 

     Active contour models are mostly used in segmentation 

of medical images because of their stretchability, and 

robustness. In those models, energy functionalities are 

widely defined over features like edges, region statistics, 

local characteristics, and a combination of edges and 

regions of the medical images which are defined by 

gradient value techniques. Previous information can be 

absorbed well to limit the optimization space.  

            A various attributes of region-based active 

contours is that the initial contours can be located 
anywhere in the image as region-based segmentation relies 

on the global energy minimization rather than local energy 

minimization. Therefore, less prior knowledge is required 

than edge-based active contours. Traditional region-based 

active contours partition an image into multiple sub 

regions, those multiple regions belong to only two subsets: 

either the inside or the outside of contours. 
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III. METHOD OVERVIEW 

This paper represents complete automatic system for 

segmenting the myocardium form CT images without 

trained images. The following flow chart [21] that 

represents a automatic segmentation of myocardium from 

CT images.  

 
Fig 1.Method overview 

 

Before starting the automation system step, the heart 

surface is estimated by the blood pool surface. Then, we 

detect the apex point of the left ventricle by using the 

relative physical coordinate of the system in CT images. 

The heart ventricle is mechanically detected by examining 

the distribution of the extent sets ranging from the apex 

purpose that is additional refined by activity the geometric 

active contour model on the blood pool surface. This 

contour decomposes the surface into 2 components, and 

also the one contains the apex purpose is chosen because 

the initial endocardium surface. Once the endcoardial 
surface is found, its corresponding mask is obtained via 

pasteurization. Then, a variational region-growing 

methodology is employed to extract the initial epicardial 

surface supported the saros segmentation. Finally, these 2 

surfaces square measure refined by using a vigorous 

contour model with a form constraint, and also the heart 

muscle is obtained by extracting voxels between these 

surfaces. The following steps that can be involved in 

automatic segmentation of myocardium: 

 

1. Left ventricle localization and myocardial wall 
segmentation 

2. Endocardium Segmentation 

3. Epicardium Segmentation   

4. Myocardium wall segmentation 

 

A. Left ventricle localization and myocardial wall 

segmentation 

        Left ventricular localization can be done by the 

following two ways 

 

1. Extract Blood Pool Surface 

2. Detect the Apex point 

Extract Blood Surfaces 

  Extraction of blood pool surface is done by the mature 

technique in computer graphics. The threshold value can 

be calculated to represent the heart image. And also 

morphological function can be applied to remove the noise 

and cut the spine in the component of heart from the CT 

image. 

Detect the apex point 

         In this system, the XYZ correlates trace from left to 

right, rearward to anterior. The long axis of human being 

heart has unusual orientations, the directions of left and 
right is patently described from the inferior view. One of 

the salient features is apex point that is very useful to 

locate the left ventricle. Its location is described as 

follows: 1) estimate the correlation of ventricles; 2) 

Calculate the left ventricle apex point, which is the left tip 

point with respect to the estimated correlation. 

         To estimate the correlation point of left ventricles, 

the boundary of the blood surface Mbp is constructed first. 

Correlation of human blood pool surfaces in the source 

image coordinate system as shown in the Fig 2 [21] 

 
                Fig 2. Correlation of human blood surface 
 

The reference directions are left (L), right(R), posterior 

(P), anterior (A), inferior (I), and superior (S). The vertices 

used for calculating the ventricle correlation are defined as 

follows 

        

Vch K+σK∩Y(p >tv}………………(1) 

 

    Where μK are mean and σK are the standard deviation 

of K( ˜p), and a threshold  value ty  that defines the region 
of interest for the left ventricles, which was calculated as  

follows 

                   ty = ymin + 0.5(ymax − ymin)...................(2) 

  
The PCA technique is very useful to find the principal 

component of these translated points ˜ ps as the orientation 

of the ventricles, denoted by H. The positive direction is 
chosen so that H has negative component in the Y 

direction. A plane LO passing through μbp with normal N 

= Z×H defines a reference plane such that the left 
ventricle points are mainly above the plane and otherwise 

for the right ventricle. 
 

B. Endocardium Segmentation 

     The serosa is that the innermost layer of heart that lines 

the chambers of the centre. Its cells area unit embryologic 

ally and biologically similar to the epithelial tissue cells 

that line blood vessels. The serosa conjointly provides 

protection to the valves and heart chambers. 

        The serosa underlies the way more voluminous heart 

muscle, the muscle liable for the contraction of the centre. 
The outer layer of the centre is termed visceral and 

therefore the heart is encircled by a little quantity of fluid 

embedded by a fibrous sac known as the pericardium. 
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       The segmentation of the serosa depends on 

segmenting the 55 cavity, by extracting completely 

different options (i.e. the gradient magnitude, the most 

important Eigen value, the output of median filter, and 

therefore the grey value) from every element within the 

image. 

 We tend to selected the options (used within the 

phaseation) attributable to the character of the 55 cavity 

that we wish to segment it. The 55 cavity seems bright and 

therefore the heart muscle that surrounds it seems dark. 

So, we want to boost edges that surround the 55 cavity.  

C. Epicardium Segmentation 

      The serous membrane may be a double-walled sac 

containing the centre and therefore the roots of the good 
vessels. The sac has 2 layers, a humour layer and a fibrous 

layer. It encloses the cavum that contains serosa fluid. 

      The serous membrane fixes the centre to the cavum, 

offers protection against infection, and provides the 

lubrication for the centre. 

      There are unit completely different tissues that 

surround the heart muscle, and these tissues have 

completely different intensity values. Also, the part of the 

visceral pericardium before of the correct ventricle is 
skinny in thickness. All of those problems create the 

segmentation of the visceral pericardium is tough. 

D. Myocardium wall segmentation 

The myocardial is described as the volume between the 

endocardium and epicardium masks. Note that the contour 

evolution process returns closed masks. To segment a 

complete myocardium wall, the blood pool surface that 

has to be removed which is residing inside the voxel. To 

this end, the wall is segmented into two parts: one that 

contains   the myocardium that can be completely 
calculated by the XOR operation between the 

endocardium and epicardium masks, and the one formed 

by removing the voxels within the blood pool surface from 

the epicardium mask. 

 

IV. DISCUSSION AND FUTURE WORK 

         We have introduced a complete automatic system for 

myocardium wall segmentation from CT images. It 

follows the coarse-to-fine strategy by first restricting the 

left ventricle and then damaging the myocardial surfaces 

of the left ventricle for segmentation and then refining this 

result by clarifying contour evolution techniques with a 
shape constraint obtained on-line. The performances have 

been evaluated by calculating the errors between 

automatic and manual segmentations. The proposed 

method was  very specific for the left ventricular 

myocardium wall segmentation, it may be utilized in 

several possible ways for broader applications in cardiac 

image segmentation  

           In future work, we planned to segment left and right 

ventricles in CT images and apply Region based 

segmentation results to clinical applications such as 

evaluating the myocardial mass at risk caused by stenos. 
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